Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1304: 342470, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637058

RESUMO

BACKGROUND: Iridium(III) complexes, exhibiting high luminescence quantum yields and a wide range of emission colours, are promising alternatives to tris(2,2'-bipyridine)ruthenium(II) for chemiluminescence (CL) and electrochemiluminescence (ECL) detection. This emerging class of reagent, however, is limited by the poor solubility of many iridium(III) complexes in aqueous solution, and lack of understanding of their remarkably variable selectivities towards different analytes. RESULTS: Seven [Ir(C^N)2(pt-TEG)]+ complexes, exhibiting a wide range of reduction potentials and emission energies, were examined with six model analytes. For CL, cerium(IV) was used as the oxidant. The alkylamine analytes generally produced greater CL and ECL with the more readily oxidised Ir(III) complexes (C^N = piq, bt, ppy), predominantly through the 'direct' pathway requiring oxidation of both metal complex and analyte. Aniline derivatives that did not also contain secondary or tertiary alkylamines elicited CL from the less readily oxidised complexes (C^N = df-ppy-CF3, df-ppy) via energy transfer. The most difficult to oxidise complexes (C^N = df(CF3)-ppy-Me, df(CN)-ppy) gave poor responses due to the limited potential window of the solvent and inefficiency of energy transfer to their high energy excited states. Greater CL and/or ECL intensities were generally obtained for each analyte with at least one Ir(III) complex than with [Ru(bpy)3]2+; superior limits of detection for two analytes were demonstrated. SIGNIFICANCE: This exploration of CL/ECL in which the properties of luminophore, analyte and oxidant are all varied provides a new understanding of the influence of the metal-complex potentials and excited state energy on the light-producing and quenching pathways, and consequently, their distinct selectivity towards different analytes. These findings will guide the development of water-soluble Ir(III) complexes as CL and ECL reagents.

2.
Angew Chem Int Ed Engl ; : e202319047, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519420

RESUMO

We report the electrochemiluminescence (ECL) of a 3d6 Cr(0) complex ([Cr(LMes)3]; λem=735 nm) with comparable photophysical properties to those of ECL-active complexes of 4d6 or 5d6 precious metal ions. The electrochemical potentials of [Cr(LMes)3] are more negative than those of [Ir(ppy)3] and render the [Cr(LMes)3]* excited state inaccessible through conventional co-reactant ECL with tri-n-propylamine or oxalate. ECL can be obtained, however, through the annihilation route in which potentials sufficient to oxidise and reduce the luminophore are alternately applied. When combined with [Ir(ppy)3] (λem=520 nm), the annihilation ECL of [Cr(LMes)3] was greatly enhanced whereas that of [Ir(ppy)3] was diminished. Under appropriate conditions, the relative intensities of the two spectrally distinct emissions can be controlled through the applied potentials. From this starting point for ECL with 3d6 metal complexes, we discuss some directions for future development.

3.
J Org Chem ; 89(4): 2683-2690, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38314706

RESUMO

This report investigates the mechanism of photochemical Povarov-type reactions of N,N-dialkylanilines and maleimides in polar solvents (DMF or dioxane) in the presence of light. Fundamental aspects of the electron donor-acceptor (EDA) photoactivation pathway proposed to underpin this chemistry are examined through integrated experimental and computational studies. This approach provided evidence supporting the involvement of an EDA complex in facilitating this chemistry via a reaction mechanism that does not involve a triplet manifold. Most notably, our findings indicate that relying solely on UV-vis absorption spectroscopic data to either account for or predict reactivity in synthetic experiments may not always provide the complete picture. More specifically, this relates to considering UV-vis absorption spectroscopic data, calculated values for association constants (KEDA) and molar extinction coefficients (ε), with the reactivity observed in associated synthetic reactions in practice.

4.
Angew Chem Int Ed Engl ; 62(24): e202303501, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37186332

RESUMO

We report a new composite material consisting of silver nanoparticles decorated with three-dimensional molecular organic cages based on light-absorbing porphyrins. The porphyrin cages serve to both stabilize the particles and allow diffusion and trapping of small molecules close to the metallic surface. Combining these two photoactive components results in a Fano-resonant interaction between the porphyrin Soret band and the nanoparticle-localised surface-plasmon resonance. Time-resolved spectroscopy revealed the silver nanoparticles transfer up to 37 % of their excited-state energy to the stabilising layer of porphyrin cages. These unusual photophysics cause a 2-fold current increase in photoelectrochemical water-splitting measurements. The composite structure provides a compelling proof of concept for advanced photosensitiser systems with intrinsic porosity for photocatalytic and sensing applications.

5.
ACS Nano ; 17(5): 4659-4666, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36801851

RESUMO

Plasmon-induced energy and charge transfer from metal nanostructures hold great potential for harvesting solar energy. Presently, the efficiencies of charge-carrier extraction are still low due to the competitive ultrafast mechanisms of plasmon relaxation. Using single-particle electron energy loss spectroscopy, we correlate the geometrical and compositional details of individual nanostructures to their carrier extraction efficiencies. By removing ensemble effects, we are able to show a direct structure-function relationship that permits the rational design of the most efficient metal-semiconductor nanostructures for energy harvesting applications. In particular, by developing a hybrid system comprising Au nanorods with epitaxially grown CdSe tips, we are able to control and enhance charge extraction. We show that optimal structures can have efficiencies as high as 45%. The quality of the Au-CdSe interface and the dimensions of the Au rod and CdSe tip are shown to be critical for achieving these high efficiencies of chemical interface damping.

6.
J Org Chem ; 88(10): 6445-6453, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36629260

RESUMO

Sacrificial additives are commonly employed in photoredox catalysis as a convenient source of electrons, but what occurs after electron transfer is often overlooked. Tertiary alkylamines initially form radical cations following electron transfer, which readily deprotonate to form strongly reducing, neutral α-amino radicals. Similarly, the oxalate radical anion (C2O4•-) rapidly decomposes to form CO2•- (E0 ≈ -2.2 V vs SCE). We show that not only are these reactive intermediates formed under photoredox conditions, but they can also impact the desired photochemistry, both positively and negatively. Photoredox systems using oxalate as an electron donor are able to engage substrates with greater energy demands, extending reactivity past the energy limits of single and multiphoton transition metal catalysts. Furthermore, oxalate offers better chemoselectivity than the commonly employed triethylamine when reducing substrates with moderate energy requirements.

7.
Dalton Trans ; 51(35): 13176-13188, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35997070

RESUMO

Visible light powers an ever-expanding suite of reactions to both make and break chemical bonds under otherwise mild conditions. As a reagent in photochemical synthesis, light is obviously critical for reactivity but rarely optimized other than in light/dark controls. This Frontier Article presents an overview of recent research that investigates the unique ways light may be manipulated, and its unusual interactions with homogeneous transition metal and organic photocatalysts.


Assuntos
Luz , Processos Fotoquímicos , Catálise , Indicadores e Reagentes , Oxirredução
8.
J Am Chem Soc ; 144(25): 11189-11202, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704840

RESUMO

Photoredox catalysts are primarily selected based on ground and excited state properties, but their activity is also intrinsically tied to the nature of their reduced (or oxidized) intermediates. Catalyst reactivity often necessitates an inherent instability, thus these intermediates represent a mechanistic turning point that affords either product formation or side-reactions. In this work, we explore the scope of a previously demonstrated side-reaction that partially saturates one pyridine ring of the ancillary ligand in heteroleptic iridium(III) complexes. Using high-throughput synthesis and screening under photochemical conditions, we identified different chemical pathways, ultimately governed by ligand composition. The ancillary ligand was the key factor that determined photochemical stability. Following photoinitiated electron transfer from a sacrificial tertiary amine, the reduced intermediate of complexes containing 1,10-phenanthroline derivatives exhibited long-term stability. In contrast, complexes containing 2,2'-bipyridines were highly susceptible to hydrogen atom transfer and ancillary ligand modification. Detailed characterization of selected complexes before and after transformation showed differing effects on the ground and excited state reduction potentials dependent on the nature of the cyclometalating ligands and excited states. The implications of catalyst stability and reactivity in chemical synthesis was demonstrated in a model photoredox reaction.


Assuntos
Irídio , Fenantrolinas , Hidrogênio , Irídio/química , Ligantes
9.
J Am Chem Soc ; 144(3): 1431-1444, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35025486

RESUMO

High-throughput synthesis and screening methods were used to measure the photochemical activity of 1440 distinct heteroleptic [Ir(C^N)2(N^N)]+ complexes for the photoreduction of Sn(II) and Zn(II) cations to their corresponding neutral metals. Kinetic data collection was carried out using home-built photoreactors and measured initial rates, obtained through an automated fitting algorithm, spanned between 0-120 µM/s for Sn(0) deposition and 0-90 µM/s for Zn(0) deposition. Photochemical reactivity was compared to photophysical properties previously measured such as deaerated excited state lifetime and emission spectral data for these same complexes; however, no clear correlations among these features were observed. A formal photochemical rate law was then developed to help elucidate the observed reactivity. Initial rates were found to be directly correlated to the product of incident photon flux with three reaction elementary efficiencies: (1) the fraction of light absorbed by the photocatalyst, (2) the fraction of excited state species that are quenched by the electron donor, and (3) the cage escape efficiency. The most active catalysts exhibit high efficiencies for all three steps, and catalyst engineering requirements to maximize these elementary efficiencies were postulated. The kinetic treatment provided the mechanistic information needed to decipher the observed structure/function trends in the high-throughput work.

10.
Inorg Chem ; 60(2): 774-781, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33411530

RESUMO

Noble-metal photosensitizers and water reduction co-catalysts (WRCs) still present the highest activity in homogeneous photocatalytic hydrogen production. The search for earth-abundant alternatives is usually limited by the time required to screen new catalyst combinations; however, here, we utilize newly designed and developed high-throughput photoreactors for the parallel synthesis of novel WRCs and colorimetric screening of hydrogen evolution. This unique approach allowed rapid optimization of photocatalytic water reduction using the organic photosensitizer Eosin Y and the archetypal cobaloxime WRC [Co(GL1)2pyCl], where GL1 is dimethylglyoxime and py is pyridine. Subsequent combinatorial synthesis generated 646 unique cobalt complexes of the type [Co(LL)2pyCl], where LL is a bidentate ligand, that identified promising new WRC candidates for hydrogen production. Density functional theory (DFT) calculations performed on such cobaloxime derivative complexes demonstrated that reactivity depends on hydride affinity. Alkyl-substituted glyoximes were necessary for hydrogen production and showed increased activity when paired with ligands containing strong hydrogen-bond donors.

11.
J Am Chem Soc ; 143(2): 1179-1194, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33411537

RESUMO

Steady state emission spectra and excited state lifetimes were measured for 1440 distinct heteroleptic [Ir(C^N)2(N^N)]+ complexes prepared via combinatorial parallelized synthesis; 72% of the complexes were found to be luminescent, and the emission maxima of the library spanned the visible spectrum (652-459 nm). Spectral profiles ranged from broad structureless bands to narrow emissions exhibiting vibrational substructure. Measured excited state lifetimes ranged between ∼0.1-14 µs. Automated emission spectral fitting with successive Gaussian functions revealed four distinct measured classes of excited states; in addition to well understood metal-ligand to ligand-charge transfer (3MLLCT) and ligand-centered (3LC) excited states, our classification also identified photophysical characteristics of less explored mixed 3MLLCT/3LC states. Electronic structure features obtained from DFT calculations performed on a large subset of these Ir(III) chromophores offered clear insights into the excited state properties and allowed the prediction of structure/luminescence relationships in this class of commonly used photocatalysts. Models with high prediction accuracy (R2 = 0.89) for emission color were developed on the basis of experimental data. Furthermore, different degrees of nuclear reorganization in the excited state were shown to significantly impact emission energy and excited state lifetimes.

12.
J Phys Chem Lett ; 11(19): 8378-8385, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936635

RESUMO

Structures capable of perfect light absorption promise technological advancements in varied applications, including sensing, optoelectronics, and photocatalysis. While it is possible to realize such structures by placing a monolayer of metal nanostructures above a reflecting surface, there remains limited studies on what effect particle size plays on their capacity to absorb light. Here, we fabricate near-perfect absorbers using colloidal Au nanoparticles, via their electrostatic self-assembly on a TiO2 film supported by a gold mirror. This method enables the control of interparticle spacing, thus minimizing reflection to achieve optimal absorption. Slightly altering the nanoparticle size in these structures reveals significant changes in the spectral separation of hybrid optical modes. We rationalize this observation by interpreting data with a coupled-mode theory that provides a thorough basis for creating functional absorbers using complex colloids and outlines the key considerations for achieving a broadened spectral response.

13.
Angew Chem Int Ed Engl ; 59(42): 18646-18654, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32621297

RESUMO

We report a new visible-light-mediated carbonylative amidation of aryl, heteroaryl, and alkyl halides. A tandem catalytic cycle of [Ir(ppy)2 (dtb-bpy)]+ generates a potent iridium photoreductant through a second catalytic cycle in the presence of DIPEA, which productively engages aryl bromides, iodides, and even chlorides as well as primary, secondary, and tertiary alkyl iodides. The versatile in situ generated catalyst is compatible with aliphatic and aromatic amines, shows high functional-group tolerance, and enables the late-stage amidation of complex natural products.

14.
Chem Sci ; 11(9): 2455-2463, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-34084410

RESUMO

Herein we report the photophysical and photochemical properties of palladacycle complexes derived from 8-aminoquinoline ligands, commonly used auxiliaries in C-H activation. Spectroscopic, electrochemical and computational studies reveal that visible light irradiation induces a mixed LLCT/MLCT charge transfer providing access to synthetically relevant Pd(iii)/Pd(iv) redox couples. The Pd(ii) complex undergoes photoinduced electron transfer with alkyl halides generating C(sp3)-H halogenation products rather than C-C bond adducts. Online photochemical ESI-MS analysis implicates participation of a mononuclear Pd(iii) species which promotes C-X bond formation via a distinct Pd(iii)/Pd(iv) pathway. To demonstrate the synthetic utility, we developed a general method for inert C(sp3)-H bond bromination, chlorination and iodination with alkyl halides. This new strategy in auxiliary-directed C-H activation provides predictable and controllable access to distinct reactivity pathways proceeding via Pd(iii)/Pd(iv) redox couples induced by visible light irradiation.

15.
Chem Sci ; 10(37): 8654-8667, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31803440

RESUMO

Translation of the highly promising electrogenerated chemiluminescence (ECL) properties of Ir(iii) complexes (with tri-n-propylamine (TPrA) as a co-reactant) into a new generation of ECL labels for ligand binding assays necessitates the introduction of functionality suitable for bioconjugation. Modification of the ligands, however, can affect not only the photophysical and electrochemical properties of the complex, but also the reaction pathways available to generate light. Through a combined theoretical and experimental study, we reveal the limitations of conventional approaches to the design of electrochemiluminophores and introduce a new class of ECL label, [Ir(C^N)2(pt-TOxT-Sq)]+ (where C^N is a range of possible cyclometalating ligands, and pt-TOxT-Sq is a pyridyltriazole ligand with trioxatridecane chain and squarate amide ethyl ester), which outperformed commercial Ir(iii) complex labels in two commonly used assay formats. Predicted limits on the redox potentials and emission wavelengths of Ir(iii) complexes capable of generating ECL via the dominant pathway applicable in microbead supported ECL assays were experimentally verified by measuring the ECL intensities of the parent luminophores at different applied potentials, and comparing the ECL responses for the corresponding labels under assay conditions. This study provides a framework to tailor ECL labels for specific assay conditions and a fundamental understanding of the ECL pathways that will underpin exploration of new luminophores and co-reactants.

16.
J Am Chem Soc ; 141(44): 17646-17658, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31545022

RESUMO

We report the discovery of a tandem catalytic process to reduce energy demanding substrates, using the [Ir(ppy)2(dtb-bpy)]+ (1+) photocatalyst. The immediate products of photoinitiated electron transfer (PET) between 1+ and triethylamine (TEA) undergo subsequent reactions to generate a previously unknown, highly reducing species (2). Formation of 2 occurs via reduction and semisaturation of the ancillary dtb-bpy ligand, where the TEA radical cation serves as an effective hydrogen atom donor, confirmed by nuclear magnetic resonance, mass spectrometry, and deuterium labeling experiments. Steady-state and time-resolved luminescence and absorption studies reveal that upon irradiation, 2 undergoes electron transfer or proton-coupled electron transfer (PCET) with a representative acceptor (N-(diphenylmethylene)-1-phenylmethanamine; S). Turnover of this new photocatalytic cycle occurs along with the reformation of 1+. We rationalize our observations by proposing the first example of a mechanistic pathway where two distinct yet interconnected photoredox cycles provide access to an extended reduction potential window capable of engaging a wide range of energy demanding and synthetically relevant organic substrates including aryl halides.

17.
Mol Ther Methods Clin Dev ; 14: 261-269, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31453264

RESUMO

Gene therapy holds great potential for conditions such as cardiovascular disease, including atherosclerosis and also vascular cancers, yet available vectors such as the adeno-associated virus (rAAV) transduce the vasculature poorly. To enable retargeting, a single-chain antibody (scFv) that binds to the vascular cell-adhesion molecule (VCAM-1) overexpressed at areas of endothelial inflammation was site specifically and covalently conjugated to the exterior of rAAV6. To achieve conjugation, the scFv was functionalized with an orthogonal click chemistry group. This conjugation utilized site-specific sortase A methodology, thus preserving scFv binding capacity to VCAM-1. The AAV6 was separately functionalized with 4-azidophenyl glyoxal (APGO) via covalent adducts to arginine residues in the capsid's heparin co-receptor binding region. APGO functionalization removed native tropism, greatly reducing rAAV6-GFP transduction into all cells tested, and the effect was similar to the inhibition seen in the presence of heparin. Utilizing the incorporated functionalizations, the scFv was then covalently conjugated to the exterior of rAAV6 via strain-promoted azide-alkyne cycloaddition (SPAAC). With both the removal of native heparin tropism and the addition of VCAM-1 targeting, rAAV6 transduction of endothelial cells was greatly enhanced compared to control cells. Thus, this novel and modular targeting system could have further application in re-directing AAV6 toward inflamed endothelium for therapeutic use.

19.
Phys Chem Chem Phys ; 20(28): 18995-19006, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29971279

RESUMO

Previously reported annihilation ECL of mixtures of metal complexes have generally comprised Ir(ppy)3 or a close analogue as a higher energy donor/emitter (green/blue light) and [Ru(bpy)3]2+ or its derivative as a lower energy acceptor/emitter (red light). In contrast, here we examine Ir(ppy)3 as the lower energy acceptor/emitter, by combining it with a second Ir(iii) complex: [Ir(df-ppy)2(ptb)]+ (where ptb = 1-benzyl-1,2,3-triazol-4-ylpyridine). The application of potentials sufficient to attain the first single-electron oxidation and reduction products can be exploited to detect Ir(ppy)3 at orders of magnitude lower concentration, or enhance its maximum emission intensity at high concentration far beyond that achievable through conventional annihilation ECL of Ir(ppy)3 involving comproportionation. Moreover, under certain conditions, the colour of the emission can be selected through the applied electrochemical potentials. We have also prepared a novel Ir(iii) complex with a sufficiently low reduction potential that the reaction between its reduced form and Ir(ppy)3+ cannot populate the excited state of either luminophore. This enabled, for the first time, the exclusive formation of either excited state through the application of higher cathodic or anodic potentials, but in both cases, the ECL was greatly diminished by parasitic dark reactions.

20.
Org Lett ; 20(4): 905-908, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29381072

RESUMO

A visible-light photocalytic method for the chemoselective transfer hydrogenation of imines in batch and continuous flow is described. The reaction utilizes Et3N as both hydrogen source and single-electron donor, enabling the selective reduction of imines derived from diarylketimines containing other reducible functional groups including nitriles, halides, esters, and ketones. The dual role of Et3N was confirmed by fluorescence quenching measurements, transient absorption spectroscopy, and deuterium-labeling studies. Continuous-flow processing facilitates straightforward scale-up of the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...